
Some R Routines for Plotting Non-Vectorizing Functions

James H. Steiger
Psychology 311

1 Introduction

In Psychology 310, we were introduced to the idea of plotting functions of a
single variable x using the curve function. A typical example would be plotting
the function sin(x) over the range from 0 to 2π.

> curve(sin(x),0,2*pi)

0 1 2 3 4 5 6

−
1.

0
−

0.
5

0.
0

0.
5

1.
0

x

si
n(

x)

However, on occasion you will discover that, despite the fact that you have
apparently called the curve function correctly, it just doesn’t work and delivers
a strange error message.

Just such an example occurs with Psychology 311 Homework 2, problem 2b.

2 Problems with a Non-vectorizing Function

Suppose we load in the t distribution power calculation functions that we used
in class. You can load them in with the command source("Curve Code.txt")

1



(the code is on the website with this handout). I show the t-function code below.

> ###Generic Function for T Rejection Point

> T.Rejection.Point <- function(alpha,df,tails){

+ if(tails==2)return(qt(1-alpha/2,df))

+ if((tails^2) != 1) return(NA)

+ return(tails*qt(1-alpha,df))

+ }

> ### Generic Function for T-Based Power

> Power.T <- function(delta,df,alpha,tails){

+ pow <- NA

+ R <- T.Rejection.Point(alpha,df,abs(tails))

+ if(tails==1)

+ pow <- 1 - pt(R,df,delta)

+ else if (tails==-1)

+ pow <- pt(R,df,delta)

+ else if (tails==2)

+ pow <- pt(-R,df,delta) + 1-pt(R,df,delta)

+ return(pow)

+ }

> ### Power Calc for One-Sample T

> Power.T1 <- function(mu,mu0,sigma,n,alpha,tails){

+ delta = sqrt(n)*(mu-mu0)/sigma

+ return(Power.T(delta,n-1,alpha,tails))

+ }

> Power.T2 <- function(mu1,mu2,sigma,n1,n2,alpha,

+ tails,hypo.diff=0){

+ delta = sqrt((n1*n2)/(n1+n2))*

+ (mu1-mu2-hypo.diff)/sigma

+ return(Power.T(delta,n1+n2-2,alpha,tails))

+ }

> Power.GT <- function(mus,ns,wts,sigma,alpha,

+ tails,kappa0=0){

+ W = sum(wts^2/ns)

+ kappa = sum(wts*mus)

+ delta = sqrt(1/W) * (kappa-kappa0)/sigma

+ df = sum(ns)-length(ns)

+ return(Power.T(delta,df,alpha,tails))

+ }

2



Now, suppose you wish to plot a curve of power vs. sample size for the 1-sample
t test, when α = 0.05 and the test is 2-sided, with an Es = (µ−µ0)/σ = 0.5. If
you write the code below, everything works out nicely.

> curve(Power.T1(.5,0,1,x,.05,2),10,100,col="red")

20 40 60 80 100

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

x

P
ow

er
.T

1(
0.

5,
 0

, 1
, x

, 0
.0

5,
 2

)

Suppose you try the same trick for a Generalized t statistic, testing the
hypothesis that µ1 +µ2−2µ3 = 0, in a situation where σ = 1, and µ1 = .4, µ2 =
.4, and µ3 = .2. If we assume equal n, and again assume α = 0.05 and that
the test is 2-sided, we would try this code in order to plot power for values of n
from 100 to 1000:

curve(Power.GT(c(.4,.4,.2),c(x,x,x),c(1,1,-2),1,0.05,2),100,1000)

Unfortunately, you discover that the code “bombs” with the following error
message:

Error in curve(Power.GT(c(0.4, 0.4, 0.2), c(x, x, x), c(1, 1, -2), 1, :

'expr' did not evaluate to an object of length 'n'

As is often the case with R, this error message is not very helpful. What is
the problem?

If you Google the error message and examine the help file for the curve

function, you may eventually discover that the curve function works as follows:

3



� It assumes that the function f(x) to be plotted is “vectorizing,” that is, if
the input x to the function is a vector instead of a single value, the function
will return a vector of values of f(x) corresponding to each element in the
vector. Most basic functions in R are vectorizing. And simple functions
based on these R functions tend to also be vectorizing. For example,

> f <- function(x)x^2

> f(1:4)

[1] 1 4 9 16

� It creates a vector of input values for x, representing the range of the plot
you want to draw.

� It then submits this vector of x values to the function, which (if it is
vectorizing) returns a vector of results

It is easy to test whether a function is vectorizing. Input a vector and see
what happens! Let’s try this with the Power.GT function.

> x <- 1050:1055

> Power.GT(c(.4,.4,.2),c(x,x,x),c(1,1,-2),1,0.05,2)

[1] 0.5805505

Note that only one value was returned. The Power.GT function is not vec-
torizing. It processed only the first input value.

Now try the Power.T1 function.

> x <- 105:110

> Power.T1(.1,0,1,x,0.05,2)

[1] 0.1738668 0.1751010 0.1763353 0.1775698 0.1788045 0.1800393

This function is vectorizing.
Looks like we have a problem. What can we do? In what follows, I describe

one “quick and easy” solution to the problem.

3 Wrapper Functions

We can’t plot power as a function of n using Power.GT in the typical way. Two
things make our task difficult. First, the function is not vectorizing. Second,
the function call is itself very messy. Only one thing is changing over the plot
points, i.e., n the sample size. But the call is complex.

To solve this second problem and make things easier, we can try creating a
temporary wrapper function.

> zz <- function(x){

+ Power.GT(c(.4,.4,.2),c(x,x,x),c(1,1,-2),1,0.05,2)

+ }

4



With the use of the zz function, if we want power for an n of 1000 in our
situation, we just type zz(1000) instead of the long messy function call.

After creating our wrapper function, we can use it in conjunction with a new
curve-plotting function that I’ve created for you.

4 New Curve-Plotting Functions

Here are equivalents to the curve function that do not require that the function
be vectorizing. These functions were in the Curve Code.txt file you loaded
earlier, so you should not have to type them in.

> curve.js <- function(f,a,b,points=100,type='l',...){

+ ftext <- paste("g <- function(x){",f,"}")

+ eval(parse(text=ftext))

+ x <- seq(a,b,length=points)

+ plot(x,mapply(g,x),type,...)

+ }

> plot.curve <- function(f,a,b,points=100,type='l',...){

+ x <- seq(a,b,length=points)

+ plot(x,mapply(f,x),type,...)

+ }

The plot.curve function requires as input the name of a function that has
a single input variable x. We can easily plot a power curve using our wrapper
function.

> plot.curve(zz,300,700)

5



300 400 500 600 700

0.
80

0.
85

0.
90

0.
95

x

m
ap

pl
y(

f, 
x)

You can touch up the graph with a variety of the standard graphics com-
mands. For example,

> plot.curve(zz,300,700,col='red',xlab='Sample Size (n)',

+ ylab = 'Power')

> abline(h=.9)

6



300 400 500 600 700

0.
80

0.
85

0.
90

0.
95

Sample Size (n)

P
ow

er

The advantage of using the wrapper function is that if you want to pin down
the function value at a particular value of n, you can type it quickly. However,
you also have to take the time to write the wrapper function. (All of about 30
seconds once you get the hang of it.)

An alternative is simply to fix R’s curve function. I took a stab at it –
standard disclaimers apply!

The curve.js function works like curve would work if it handled vectorizing
functions. The only diffence is that you have to put the input function in quotes.
This function does not require the use of a wrapper function. Study the code
for the function above and see if you can figure out what it is doing.

Here is an example using the curve.js function.

> curve.js("Power.GT(c(.4,.4,.2),c(x,x,x),c(1,1,-2),1,0.05,2)",

+ 300,700,col='red',xlab='Sample Size (n)',ylab = 'Power')

> abline(h=.9)

7



300 400 500 600 700

0.
80

0.
85

0.
90

0.
95

Sample Size (n)

P
ow

er

You may want to keep this function handy should you run into the problem
with curve I described.

8


